Premium
Climatology of the Occurrence Rate and Amplitudes of Local Time Distinguished Equatorial Plasma Depletions Observed by Swarm Satellite
Author(s) -
Wan Xin,
Xiong Chao,
RodriguezZuluaga Juan,
Kervalishvili Guram N.,
Stolle Claudia,
Wang Hui
Publication year - 2018
Publication title -
journal of geophysical research: space physics
Language(s) - English
Resource type - Journals
eISSN - 2169-9402
pISSN - 2169-9380
DOI - 10.1002/2017ja025072
Subject(s) - amplitude , satellite , physics , daytime , total electron content , solar minimum , local time , environmental science , ionosphere , geodesy , atmospheric sciences , plasma , geology , geophysics , solar cycle , statistics , astronomy , mathematics , tec , solar wind , optics , quantum mechanics
In this study, we developed an autodetection technique for the equatorial plasma depletions (EPDs) and their occurrence and depletion amplitudes based on in situ electron density measurements gathered by Swarm A satellite. For the first time, comparisons are made among the detected EPDs and their amplitudes with the loss of Global Positioning System (GPS) signal of receivers onboard Swarm A, and the Swarm Level‐2 product, Ionospheric Bubble Index (IBI). It has been found that the highest rate of EPD occurrence takes place generally between 2200 and 0000 magnetic local time (MLT), in agreement with the IBI. However, the largest amplitudes of EPD are detected earlier at about 1900–2100 MLT. This coincides with the moment of higher background electron density and the largest occurrence of GPS signal loss. From a longitudinal perspective, the higher depletion amplitude is always witnessed in spatial bins with higher background electron density. At most longitudes, the occurrence rate of postmidnight EPDs is reduced compared to premidnight ones; while more postmidnight EPDs are observed at African longitudes. CHAMP observations confirm this point regardless of high or low solar activity condition. Further by comparing with previous studies and the plasma vertical drift velocity from ROCSAT‐1, we suggest that while the F region vertical plasma drift plays a key role in dominating the occurrence of EPDs during premidnight hours, the postmidnight EPDs are the combined results from the continuing of former EPDs and newborn EPDs, especially during June solstice. And these newborn EPDs during postmidnight hours seem to be less related to the plasma vertical drift.