Premium
Extreme High‐Temperature Events Over East Asia in 1.5°C and 2°C Warmer Futures: Analysis of NCAR CESM Low‐Warming Experiments
Author(s) -
Li Donghuan,
Zhou Tianjun,
Zou Liwei,
Zhang Wenxia,
Zhang Lixia
Publication year - 2018
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1002/2017gl076753
Subject(s) - climatology , global warming , environmental science , peninsula , climate change , atmospheric sciences , east asia , china , geography , geology , oceanography , archaeology
Extreme high‐temperature events have large socioeconomic and human health impacts. East Asia (EA) is a populous region, and it is crucial to assess the changes in extreme high‐temperature events in this region under different climate change scenarios. The Community Earth System Model low‐warming experiment data were applied to investigate the changes in the mean and extreme high temperatures in EA under 1.5°C and 2°C warming conditions above preindustrial levels. The results show that the magnitude of warming in EA is approximately 0.2°C higher than the global mean. Most populous subregions, including eastern China, the Korean Peninsula, and Japan, will see more intense, more frequent, and longer‐lasting extreme temperature events under 1.5°C and 2°C warming. The 0.5°C lower warming will help avoid 35%–46% of the increases in extreme high‐temperature events in terms of intensity, frequency, and duration in EA with maximal avoidance values (37%–49%) occurring in Mongolia. Thus, it is beneficial for EA to limit the warming target to 1.5°C rather than 2°C.