z-logo
Premium
Is There a Tectonically Driven Supertidal Cycle?
Author(s) -
Green J. A. M.,
Molloy J. L.,
Davies H. S.,
Duarte J. C.
Publication year - 2018
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1002/2017gl076695
Subject(s) - supercontinent , geology , myr , bathymetry , tectonics , oceanography , geophysics , paleontology , craton , biochemistry , chemistry , genome , gene
Earth is 180 Myr into the current supercontinent cycle, and the next supercontinent is predicted to form in 250 Myr. The continuous changes in continental configuration can move the ocean between resonant states, and the semidiurnal tides are currently large compared to the past 252 Myr due to tidal resonance in the Atlantic. This leads to the hypothesis that there is a “supertidal” cycle linked to the supercontinent cycle. Here this is tested using new tectonic predictions for the next 250 Myr as bathymetry in a numerical tidal model. The simulations support the following hypothesis: a new tidal resonance will appear 150 Myr from now, followed by a decreasing tide as the supercontinent forms 100 Myr later. This affects the dissipation of tidal energy in the oceans, with consequences for the evolution of the Earth‐Moon system, ocean circulation and climate, and implications for the ocean's capacity of hosting and evolving life.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here