z-logo
Premium
The influence of sulfur on the electrical resistivity of hcp iron: Implications for the core conductivity of Mars and Earth
Author(s) -
Suehiro Sho,
Ohta Kenji,
Hirose Kei,
Morard Guillaume,
Ohishi Yasuo
Publication year - 2017
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1002/2017gl074021
Subject(s) - electrical resistivity and conductivity , alloy , mars exploration program , impurity , materials science , sulfur , silicon , earth (classical element) , mineralogy , analytical chemistry (journal) , metallurgy , geology , astrobiology , chemistry , physics , quantum mechanics , mathematical physics , organic chemistry , chromatography
Cosmochemical and geochemical studies suggest sulfur (S) as a light alloying element in the iron‐rich cores of telluric planets, but there is no report of sulfur's alloying effect on the electrical and thermal transport properties of iron (Fe); a subject that is closely related to the dynamo action and thermal evolution of planetary cores. We measured the electrical resistivity of hexagonal‐closed‐packed (hcp) structured Fe alloy containing 3 wt. % silicon (Si) and 3 wt. % S up to 110 GPa at 300 K. Combined with the reported resistivities of hcp Fe and hcp Fe‐Si alloy, we determined the impurity resistivity of S in a hcp Fe matrix at high pressures. The obtained impurity resistivity of S is found to be smaller than that of Si. Therefore, S is a weaker influence on the conductivity of Fe alloy, even if S is a major light element in the planetary cores.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom