z-logo
Premium
The poleward shift of storm tracks under global warming: A Lagrangian perspective
Author(s) -
Tamarin T.,
Kaspi Y.
Publication year - 2017
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1002/2017gl073633
Subject(s) - climatology , middle latitudes , extratropical cyclone , storm , advection , global warming , cyclone (programming language) , atmospheric sciences , environmental science , storm track , diabatic , potential vorticity , latitude , geology , climate change , meteorology , vorticity , vortex , geography , oceanography , physics , adiabatic process , geodesy , field programmable gate array , computer science , computer hardware , thermodynamics
Comprehensive models of climate change projections have shown that the latitudinal band of extratropical storms will likely shift poleward under global warming. Here we study this poleward shift from a Lagrangian storm perspective, through simulations with an idealized general circulation model. By employing a feature tracking technique to identify the storms, we demonstrate that the poleward motion of individual cyclones increases with increasing global mean temperature. A potential vorticity tendency analysis of the cyclone composites highlights two leading mechanisms responsible for enhanced poleward motion: nonlinear horizontal advection and diabatic heating associated with latent heat release. Our results imply that for a 4 K rise in the global mean surface temperature, the mean poleward displacement of cyclones increases by about 0.85° of latitude, and this occurs in addition to a poleward shift of about 0.6° in their mean genesis latitude. Changes in cyclone tracks may have a significant impact on midlatitude climate, especially in localized storm tracks such as the Atlantic and Pacific storm tracks, which may exhibit a more poleward deflected shape.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom