z-logo
Premium
Near‐glacier surveying of a subglacial discharge plume: Implications for plume parameterizations
Author(s) -
Jackson R. H.,
Shroyer E. L.,
Nash J. D.,
Sutherland D. A.,
Carroll D.,
Fried M. J.,
Catania G. A.,
Bartholomaus T. C.,
Stearns L. A.
Publication year - 2017
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1002/2017gl073602
Subject(s) - plume , geology , glacier , fjord , meltwater , submarine , geomorphology , oceanography , meteorology , physics
At tidewater glaciers, plume dynamics affect submarine melting, fjord circulation, and the mixing of meltwater. Models often rely on buoyant plume theory to parameterize plumes and submarine melting; however, these parameterizations are largely untested due to a dearth of near‐glacier measurements. Here we present a high‐resolution ocean survey by ship and remotely operated boat near the terminus of Kangerlussuup Sermia in west Greenland. These novel observations reveal the 3‐D structure and transport of a near‐surface plume, originating at a large undercut conduit in the glacier terminus, that is inconsistent with axisymmetric plume theory, the most common representation of plumes in ocean‐glacier models. Instead, the observations suggest a wider upwelling plume—a “truncated” line plume of ∼200 m width—with higher entrainment and plume‐driven melt compared to the typical axisymmetric representation. Our results highlight the importance of a subglacial outlet's geometry in controlling plume dynamics, with implications for parameterizing the exchange flow and submarine melt in glacial fjord models.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here