z-logo
Premium
Photoemission and electrostatic potentials on the dayside lunar surface in the terrestrial magnetotail lobes
Author(s) -
Harada Y.,
Poppe A. R.,
Halekas J. S.,
Chamberlin P. C.,
McFadden J. P.
Publication year - 2017
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1002/2017gl073419
Subject(s) - flux (metallurgy) , physics , spectral line , computational physics , astrobiology , geophysics , astronomy , materials science , metallurgy
Despite the need to accurately predict and assess the lunar electrostatic environment in all ambient conditions that the Moon encounters, photoemission and electrostatic potentials on the dayside lunar surface in the terrestrial magnetotail lobes remain poorly characterized. We study characteristics and variabilities of lunar photoelectron energy spectra by utilizing Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS) and Apollo measurements in combination with the Flare Irradiance Spectral Model (FISM). We confirm that the photoelectron spectral shapes are consistent between ARTEMIS and Apollo and that the photoelectron flux is linearly correlated with the FISM solar photon flux. We develop an observation‐based model of lunar photoelectron energy distributions, thereby deriving the current balance surface potential. The model predicts that dayside lunar surface potentials in the tail lobes (typically tens of volts) could increase by a factor of 2–3 during strong solar flares.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here