z-logo
Premium
Changing duration and spatial extent of midlatitude precipitation extremes across different climates
Author(s) -
Dwyer J. G.,
O'Gorman P. A.
Publication year - 2017
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1002/2017gl072855
Subject(s) - climatology , precipitation , environmental science , middle latitudes , atmospheric sciences , advection , climate model , climate change , duration (music) , global warming , spatial ecology , latitude , geology , meteorology , geography , art , ecology , oceanography , physics , literature , biology , thermodynamics , geodesy
Precipitation extremes intensify with climate warming in observations and simulations, but changes in their duration or spatial extent are not well understood. Here the duration and zonal length of midlatitude precipitation extremes are quantified in climate model simulations. Most comprehensive climate models project a decrease in duration over the 21st century, although the magnitude of the decrease with warming is less than 1% K −1 in the multimodel mean. An advective time scale based on the mean zonal wind is shown to be linked to the duration in terms of spatial distribution, intermodel differences, and response to climate change. In simulations with an idealized climate model, a stronger meridional temperature gradient decreases the duration despite increases in the zonal length, and this is explained using the thermal wind relation and the Rossby deformation radius. However, the response of the zonal length to increasing mean temperature requires further study.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here