z-logo
open-access-imgOpen Access
Mechanisms to Explain the Elemental Composition of the Initial Aragonite Shell of Larval Oysters
Author(s) -
Haley Brian A.,
Hales Burke,
Brunner Elizabeth L.,
Kovalchik Kevin,
Waldbusser George G.
Publication year - 2018
Publication title -
geochemistry, geophysics, geosystems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.928
H-Index - 136
ISSN - 1525-2027
DOI - 10.1002/2017gc007133
Subject(s) - aragonite , biomineralization , carbonate , seawater , calcium carbonate , geology , calcite , dolomite , oyster , mineralogy , environmental chemistry , geochemistry , chemistry , oceanography , paleontology , organic chemistry
Calcifying organisms face increasing stress from the changing carbonate chemistry of an acidifying ocean, particularly bivalve larvae that live in upwelling regions of the world, such as the coastal and estuarine waters of Oregon (USA). Arguably the first and most significant developmental hurdle faced by larval oysters is formation of their initial prodissoconch I (PDI) shell, upon which further ontological development depends. We measured the minor metal compositions (Sr/Ca, Mg/Ca) of this aragonitic PDI shell and of post‐PDI larval Crassostrea gigas shell, as well as the water they were reared in, over ∼20 days for a May and an August cohort in 2011, during which time there was no period of carbonate under‐saturation. After testing various methods, we successfully isolated the shell from organic tissue using a 5% active chlorine bleach solution. Elemental compositions (Sr, Mg, C, N) of the shells post‐treatment showed that shell Sr/Ca ranged from 1.55 to 1.82 mmol/mol; Mg/Ca from 0.60 to 1.11 mmol/mol, similar to the few comparable published data for larval oyster aragonite compositions. We compare these data in light of possible biomineralization mechanisms: an amorphous calcium carbonate (ACC) path, an intercellular path, and a direct‐from‐seawater path to shell formation via biologically induced inorganic precipitation of aragonite. The last option provides a mechanistic explanation for: (1) the accelerated precipitation rates of biogenic calcification in the absence of a calcifying fluid; (2) consistently elevated precipitation rates at varying ambient‐water saturation states; and (3) the high Ca‐selectivity of the early larval calcification despite rapid precipitation rates.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here