Open Access
Morphological Expressions of Crater Infill Collapse: Model Simulations of Chaotic Terrains on Mars
Author(s) -
Roda Manuel,
Marketos George,
Westerweel Jan,
Govers Rob
Publication year - 2017
Publication title -
geochemistry, geophysics, geosystems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.928
H-Index - 136
ISSN - 1525-2027
DOI - 10.1002/2017gc006933
Subject(s) - impact crater , geology , martian , infill , terrain , mars exploration program , hesperian , noachian , chaotic , geomorphology , geometry , astrobiology , physics , mathematics , ecology , artificial intelligence , computer science , biology
Abstract Martian chaotic terrains are characterized by deeply depressed intensively fractured areas that contain a large number of low‐strain tilted blocks. Stronger deformation (e.g., higher number of fractures) is generally observed in the rims when compared to the middle regions of the terrains. The distribution and number of fractures and tilted blocks are correlated with the size of the chaotic terrains. Smaller chaotic terrains are characterized by few fractures between undeformed blocks. Larger terrains show an elevated number of fractures uniformly distributed with single blocks. We investigate whether this surface morphology may be a consequence of the collapse of the infill of a crater. We perform numerical simulations with the Discrete Element Method and we evaluate the distribution of fractures within the crater and the influence of the crater size, infill thickness, and collapsing depth on the final morphology. The comparison between model predictions and the morphology of the Martian chaotic terrains shows strong statistical similarities in terms of both number of fractures and correlation between fractures and crater diameters. No or very weak correlation is observed between fractures and the infill thickness or collapsing depth. The strong correspondence between model results and observations suggests that the collapse of an infill layer within a crater is a viable mechanism for the peculiar morphology of the Martian chaotic terrains.