z-logo
open-access-imgOpen Access
Carbon isotope systematics of T urrialba volcano, C osta R ica, using a portable cavity ring‐down spectrometer
Author(s) -
Malowany K. S.,
Stix J.,
de Moor J. M.,
Chu K.,
LacrampeCouloume G.,
Sherwood Lollar B.
Publication year - 2017
Publication title -
geochemistry, geophysics, geosystems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.928
H-Index - 136
ISSN - 1525-2027
DOI - 10.1002/2017gc006856
Subject(s) - volcano , plume , impact crater , hydrothermal circulation , geology , volcanic rock , geochemistry , earth science , mineralogy , seismology , meteorology , geography , physics , astronomy
Over the past two decades, activity at Turrialba volcano, Costa Rica, has shifted from hydrothermal to increasingly magmatic in character, with enhanced degassing and eruption potential. We have conducted a survey of the δ 13 C signatures of gases at Turrialba using a portable field‐based CRDS with comparison to standard IRMS techniques. Our δ 13 C results of the volcanic plume, high‐temperature vents, and soil gases reveal isotopic heterogeneity in the CO 2 gas composition at Turrialba prior to its recent phase of eruptive activity. The isotopic value of the regional fault system, Falla Ariete (–3.4 ± 0.1‰), is in distinct contrast with the Central crater gases (–3.9 ± 0.1‰) and the 2012 high‐temperature vent (–4.4 ± 0.2‰), an indication that spatial variability in δ 13 C may be linked to hydrothermal transport of volcanic gases, heterogeneities in the source composition, or magmatic degassing. Isotopic values of CO 2 samples collected in the plume vary from δ 13 C of −5.2 to −10.0‰, indicative of mixing between atmospheric CO 2 (–9.2 ± 0.1‰), and a volcanic source. We compare the Keeling method to a traditional mixing model (hyperbolic mixing curve) to estimate the volcanic source composition at Turrialba from the plume measurements. The predicted source compositions from the Keeling and hyperbolic methods (–3.0 ± 0.5‰ and −3.9 ± 0.4‰, respectively) illustrate two potential interpretations of the volcanic source at Turrialba. As of the 29 October 2014, Turrialba has entered a new eruptive period, and continued monitoring of the summit gases for δ 13 C should be conducted to better understand the dominant processes controlling δ 13 C fractionation at Turrialba.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here