z-logo
Premium
Distributed T emperature S ensing as a downhole tool in hydrogeology
Author(s) -
Bense V. F.,
Read T.,
Bour O.,
Le Borgne T.,
Coleman T.,
Krause S.,
Chalari A.,
Mondanos M.,
Ciocca F.,
Selker J. S.
Publication year - 2016
Publication title -
water resources research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.863
H-Index - 217
eISSN - 1944-7973
pISSN - 0043-1397
DOI - 10.1002/2016wr018869
Subject(s) - hydrogeology , borehole , geology , groundwater flow , aquifer , petroleum engineering , geophysics , environmental science , remote sensing , groundwater , geotechnical engineering
Distributed Temperature Sensing (DTS) technology enables downhole temperature monitoring to study hydrogeological processes at unprecedentedly high frequency and spatial resolution. DTS has been widely applied in passive mode in site investigations of groundwater flow, in‐well flow, and subsurface thermal property estimation. However, recent years have seen the further development of the use of DTS in an active mode (A‐DTS) for which heat sources are deployed. A suite of recent studies using A‐DTS downhole in hydrogeological investigations illustrate the wide range of different approaches and creativity in designing methodologies. The purpose of this review is to outline and discuss the various applications and limitations of DTS in downhole investigations for hydrogeological conditions and aquifer geological properties. To this end, we first review examples where passive DTS has been used to study hydrogeology via downhole applications. Secondly, we discuss and categorize current A‐DTS borehole methods into three types. These are thermal advection tests, hybrid cable flow logging, and heat pulse tests. We explore the various options with regards to cable installation, heating approach, duration, and spatial extent in order to improve their applicability in a range of settings. These determine the extent to which each method is sensitive to thermal properties, vertical in‐well flow, or natural gradient flow. Our review confirms that the application of DTS has significant advantages over discrete point temperature measurements, particularly in deep wells, and highlights the potential for further method developments in conjunction with other emerging hydrogeophysical tools.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here