z-logo
Premium
Capture zone delineation methodology based on the maximum concentration: Preventative groundwater well protection areas for heat exchange fluid mixtures
Author(s) -
Okkonen Jarkko,
Neupauer Roseanna M.
Publication year - 2016
Publication title -
water resources research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.863
H-Index - 217
eISSN - 1944-7973
pISSN - 0043-1397
DOI - 10.1002/2016wr018715
Subject(s) - groundwater , contamination , advection , environmental science , dispersion (optics) , mass transfer , hydrology (agriculture) , soil science , environmental chemistry , chemistry , geology , thermodynamics , chromatography , geotechnical engineering , ecology , physics , optics , biology
Abstract Capture zones of water supply wells are most often delineated based on travel times of water or solute to the well, with the assumption that if the travel time is sufficiently large, the concentration of chemical at the well will not exceed the drinking water standards. In many situations, the likely source concentrations or release masses of contamination from the potential sources are unknown; therefore, the exact concentration at the well cannot be determined. In situations in which the source mass can be estimated with some accuracy, the delineation of the capture zone should be based on the maximum chemical concentration that can be expected at the well, rather than on an arbitrary travel time. We present a new capture zone delineation methodology that is based on this maximum chemical concentration. The method delineates capture zones by solving the adjoint of the advection‐dispersion‐reaction equation and relating the adjoint state and the known release mass to the expected chemical concentration at the well. We demonstrate the use of this method through a case study in which soil heat exchange systems are potential sources of contamination. The heat exchange fluid mixtures contain known fluid volumes and chemical concentrations; thus, in the event of a release, the release mass of the chemical is known. We also demonstrate the use of a concentration basis in quantifying other measures of well vulnerability including exposure time and time to exceed a predefined threshold concentration at the well.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here