Premium
Using stochastic dual dynamic programming in problems with multiple near‐optimal solutions
Author(s) -
Rougé Charles,
Tilmant Amaury
Publication year - 2016
Publication title -
water resources research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.863
H-Index - 217
eISSN - 1944-7973
pISSN - 0043-1397
DOI - 10.1002/2016wr018608
Subject(s) - mathematical optimization , dynamic programming , state space , stochastic programming , computer science , dual (grammatical number) , mathematics , statistics , art , literature
Abstract Stochastic dual dynamic programming (SDDP) is one of the few algorithmic solutions available to optimize large‐scale water resources systems while explicitly considering uncertainty. This paper explores the consequences of, and proposes a solution to, the existence of multiple near‐optimal solutions (MNOS) when using SDDP for mid or long‐term river basin management. These issues arise when the optimization problem cannot be properly parametrized due to poorly defined and/or unavailable data sets. This work shows that when MNOS exists, (1) SDDP explores more than one solution trajectory in the same run, suggesting different decisions in distinct simulation years even for the same point in the state‐space, and (2) SDDP is shown to be very sensitive to even minimal variations of the problem setting, e.g., initial conditions—we call this “algorithmic chaos.” Results that exhibit such sensitivity are difficult to interpret. This work proposes a reoptimization method, which simulates system decisions by periodically applying cuts from one given year from the SDDP run. Simulation results obtained through this reoptimization approach are steady state solutions, meaning that their probability distributions are stable from year to year.