z-logo
Premium
Ocean Tide Influences on the Antarctic and Greenland Ice Sheets
Author(s) -
Padman Laurie,
Siegfried Matthew R.,
Fricker Helen A.
Publication year - 2018
Publication title -
reviews of geophysics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 8.087
H-Index - 156
eISSN - 1944-9208
pISSN - 8755-1209
DOI - 10.1002/2016rg000546
Subject(s) - geology , ice sheet , sea ice , antarctic sea ice , drift ice , ice shelf , cryosphere , oceanography , arctic ice pack , ice stream , fast ice , sea ice thickness , bathymetry , future sea level , greenland ice sheet , ice sheet model , iceberg , climatology
Ocean tides are the main source of high‐frequency variability in the vertical and horizontal motion of ice sheets near their marine margins. Floating ice shelves, which occupy about three quarters of the perimeter of Antarctica and the termini of four outlet glaciers in northern Greenland, rise and fall in synchrony with the ocean tide. Lateral motion of floating and grounded portions of ice sheets near their marine margins can also include a tidal component. These tide‐induced signals provide insight into the processes by which the oceans can affect ice sheet mass balance and dynamics. In this review, we summarize in situ and satellite‐based measurements of the tidal response of ice shelves and grounded ice, and spatial variability of ocean tide heights and currents around the ice sheets. We review sensitivity of tide heights and currents as ocean geometry responds to variations in sea level, ice shelf thickness, and ice sheet mass and extent. We then describe coupled ice‐ocean models and analytical glacier models that quantify the effect of ocean tides on lower‐frequency ice sheet mass loss and motion. We suggest new observations and model developments to improve the representation of tides in coupled models that are used to predict future ice sheet mass loss and the associated contribution to sea level change. The most critical need is for new data to improve maps of bathymetry, ice shelf draft, spatial variability of the drag coefficient at the ice‐ocean interface, and higher‐resolution models with improved representation of tidal energy sinks.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom