z-logo
Premium
Characterizing land surface phenology and responses to rainfall in the Sahara desert
Author(s) -
Yan Dong,
Zhang Xiaoyang,
Yu Yunyue,
Guo Wei,
Hanan Niall P.
Publication year - 2016
Publication title -
journal of geophysical research: biogeosciences
Language(s) - English
Resource type - Journals
eISSN - 2169-8961
pISSN - 2169-8953
DOI - 10.1002/2016jg003441
Subject(s) - vegetation (pathology) , wet season , phenology , environmental science , arid , growing season , seasonality , desert (philosophy) , dry season , normalized difference vegetation index , climatology , physical geography , ecology , geography , climate change , geology , biology , medicine , pathology , philosophy , epistemology
Land surface phenology (LSP) in the Sahara desert is poorly understood due to the difficulty in detecting subtle variations in vegetation greenness. This study examined the spatial and temporal patterns of LSP and its responses to rainfall seasonality in the Sahara desert. We first generated daily two‐band enhanced vegetation index (EVI2) from half‐hourly observations acquired by the Spinning Enhanced Visible and Infrared Imager on board the Meteosat Second Generation series of geostationary satellites from 2006 to 2012. The EVI2 time series was used to retrieve LSP based on the Hybrid Piecewise Logistic Model. We further investigated the associations of spatial and temporal patterns in LSP with those in rainfall seasonality derived from the daily rainfall time series of the Tropical Rainfall Measurement Mission. Results show that the spatial shifts in the start of the vegetation growing season generally follow the rainy season onset that is controlled by the summer rainfall regime in the southern Sahara desert. In contrast, the end of the growing season significantly lags the end of the rainy season without any significant dependence. Vegetation growing season can unfold during the dry seasons after onset is triggered during rainy seasons. Vegetation growing season can be as long as 300 days or more in some areas and years. However, the EVI2 amplitude and accumulation across the Sahara region was very low indicating sparse vegetation as expected in desert regions. EVI2 amplitude and accumulated EVI2 strongly depended on rainfall received during the growing season and the preceding dormancy period.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here