Premium
Biofilm growth in gravel bed streams controls solute residence time distributions
Author(s) -
Aubeneau A. F.,
Hanrahan Brittany,
Bolster Diogo,
Tank Jennifer
Publication year - 2016
Publication title -
journal of geophysical research: biogeosciences
Language(s) - English
Resource type - Journals
eISSN - 2169-8961
pISSN - 2169-8953
DOI - 10.1002/2016jg003333
Subject(s) - streams , biofilm , benthic zone , biogeochemical cycle , environmental science , substrate (aquarium) , hyporheic zone , flow conditions , residence time (fluid dynamics) , ecology , hydrology (agriculture) , environmental chemistry , chemistry , surface water , flow (mathematics) , geology , environmental engineering , biology , bacteria , geotechnical engineering , computer science , computer network , paleontology , geometry , mathematics
Streambed substrates harbor a rich biome responsible for biogeochemical processing in riverine waters. Beyond their biological role, the presence of benthic and hyporheic biofilms can play an important role in influencing large‐scale transport of solutes, even for conservative tracers. As biofilms grow and accumulate biomass, they actively interact with and influence surface and subsurface flow patterns. To explore this effect, we conducted experiments at the Notre Dame Linked Ecosystems Experimental Facility in four outdoor streams, each with different gravel beds. Over the course of 20 weeks we conducted transport experiments in each of these streams and observed different patterns in breakthrough curves as biofilms grew on the substrate. Biofilms played a major role in shaping the observed conservative transport patterns. Overall, while the presence of biofilms led to a decreased exchange rate between the fast (mobile) and slow (immobile) parts of the flow domain, water that was exchanged tended to be stored in the slow regions for longer times once biofilms had established. More specifically, we observed enhanced longitudinal dispersion in breakthrough curves as well as broader residence time distributions when biofilms were present. Biofilm colonization over time homogenized transport patterns across the four streams that were originally very distinct. These results indicate that stream biofilms exert a strong control on conservative solute transport in streams, a role that to date has not received enough attention.