z-logo
Premium
The association of hydrogen with sulfur on Mars across latitudes, longitudes, and compositional extremes
Author(s) -
Karunatillake Suniti,
Wray James J.,
Gasnault Olivier,
McLennan Scott M.,
Deanne Rogers A.,
Squyres Steven W.,
Boynton William V.,
Skok J. R.,
Button Nicole E.,
Ojha Lujendra
Publication year - 2016
Publication title -
journal of geophysical research: planets
Language(s) - English
Resource type - Journals
eISSN - 2169-9100
pISSN - 2169-9097
DOI - 10.1002/2016je005016
Subject(s) - regolith , mars exploration program , astrobiology , latitude , geology , martian , northern hemisphere , atmospheric sciences , physics , geodesy
Midlatitudinal hydrated sulfates on Mars may influence brine pH, atmospheric humidity, and collectively water activity. These factors affect the habitability of the planetary subsurface and the preservation of relict biomolecules. Regolith at grain sizes smaller than gravel, constituting the bulk of the Martian subsurface at regional scales, may be a primary repository of chemical alteration, mechanical alteration, and biosignatures. The Mars Odyssey Gamma Ray Spectrometer with hundreds of kilometers of lateral resolution and compositional sensitivity to decimeter depth provides unique insight into this component of the regolith, which we call soil. Advancing the globally compelling association between H 2 O and S established by our previous work, we characterize latitudinal variations in the association between H and S, as well as in the hydration state of soil. Represented by H 2 O:S molar ratios, the hydration state of candidate sulfates increases with latitude in the northern hemisphere. In contrast, hydration states generally decrease with latitude in the south. Furthermore, we observe that H 2 O concentration may affect the degree of sulfate hydration more than S concentration. Limited H 2 O availability in soil‐atmosphere exchange and in subsurface recharge could explain such control exerted by H 2 O on salt hydration. Differences in soil thickness, ground ice table depths, atmospheric circulation, and insolation may contribute to hemispheric differences in the progression of hydration with latitude. Our observations support chemical association of H 2 O with S in the southern hemisphere as suggested by Karunatillake et al. (2014), including the possibility of Fe sulfates as a key mineral group.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here