z-logo
Premium
Arctic decadal variability in a warming world
Author(s) -
Linden Eveline C.,
Bintanja Richard,
Hazeleger Wilco
Publication year - 2017
Publication title -
journal of geophysical research: atmospheres
Language(s) - English
Resource type - Journals
eISSN - 2169-8996
pISSN - 2169-897X
DOI - 10.1002/2016jd026058
Subject(s) - arctic geoengineering , arctic sea ice decline , climatology , arctic , environmental science , arctic ice pack , climate change , arctic dipole anomaly , forcing (mathematics) , sea ice , arctic oscillation , global warming , sea surface temperature , cryosphere , climate model , oceanography , geology , antarctic sea ice , northern hemisphere
Natural decadal variability of surface air temperature might obscure Arctic temperature trends induced by anthropogenic forcing. It is therefore imperative to know how Arctic decadal variability (ADV) will change as the climate warms. In this study, we evaluate ADV characteristics in three equilibrium climates with present‐day, double, and quadrupled atmospheric CO 2 forcing. The dominant region of variability, which is located over the Barents and Greenland Sea at present, shifts to the central Arctic and Siberian regions as the climate warms. The maximum variability in sea ice cover and surface air temperature occurs in the CO 2 doubling climate when sea ice becomes more vulnerable to melt over vast stretches of the Arctic. Furthermore, the links between dominant atmospheric circulation modes and Arctic surface climate characteristics vary strongly with climate change. For instance, a positive Arctic Oscillation index is associated with a colder Arctic in warmer climates, instead of a warmer Arctic at present. Such changing relationships are partly related to the retreat of sea ice because altered wind patterns influence the sea ice distribution and hence the associated local surface fluxes. The atmospheric pressure distributions governing ADV and the associated large‐scale dynamics also change with climate warming. The changing character of the ADV shows that it is vital to consider (changes in) ADV when addressing Arctic warming in climate model projections.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here