Premium
A statistical approach for isolating fossil fuel emissions in atmospheric inverse problems
Author(s) -
Yadav Vineet,
Michalak Anna M.,
Ray Jaideep,
Shiga Yoichi P.
Publication year - 2016
Publication title -
journal of geophysical research: atmospheres
Language(s) - English
Resource type - Journals
eISSN - 2169-8996
pISSN - 2169-897X
DOI - 10.1002/2016jd025642
Subject(s) - covariance , covariate , environmental science , a priori and a posteriori , statistics , econometrics , atmospheric sciences , climate change , climatology , meteorology , mathematics , geography , geology , philosophy , oceanography , epistemology
Abstract Independent verification and quantification of fossil fuel (FF) emissions constitutes a considerable scientific challenge. By coupling atmospheric observations of CO 2 with models of atmospheric transport, inverse models offer the possibility of overcoming this challenge. However, disaggregating the biospheric and FF flux components of terrestrial fluxes from CO 2 concentration measurements has proven to be difficult, due to observational and modeling limitations. In this study, we propose a statistical inverse modeling scheme for disaggregating winter time fluxes on the basis of their unique error covariances and covariates, where these covariances and covariates are representative of the underlying processes affecting FF and biospheric fluxes. The application of the method is demonstrated with one synthetic and two real data prototypical inversions by using in situ CO 2 measurements over North America. Inversions are performed only for the month of January, as predominance of biospheric CO 2 signal relative to FF CO 2 signal and observational limitations preclude disaggregation of the fluxes in other months. The quality of disaggregation is assessed primarily through examination of a posteriori covariance between disaggregated FF and biospheric fluxes at regional scales. Findings indicate that the proposed method is able to robustly disaggregate fluxes regionally at monthly temporal resolution with a posteriori cross covariance lower than 0.15 µmol m −2 s −1 between FF and biospheric fluxes. Error covariance models and covariates based on temporally varying FF inventory data provide a more robust disaggregation over static proxies (e.g., nightlight intensity and population density). However, the synthetic data case study shows that disaggregation is possible even in absence of detailed temporally varying FF inventory data.