z-logo
Premium
Synoptic‐to‐planetary scale wind variability enhances phytoplankton biomass at ocean fronts
Author(s) -
Whitt D. B.,
Taylor J. R.,
Lévy M.
Publication year - 2017
Publication title -
journal of geophysical research: oceans
Language(s) - English
Resource type - Journals
eISSN - 2169-9291
pISSN - 2169-9275
DOI - 10.1002/2016jc011899
Subject(s) - upwelling , phytoplankton , mixed layer , front (military) , wind stress , environmental science , oceanography , biogeochemical cycle , atmospheric sciences , geology , nutrient , chemistry , organic chemistry , environmental chemistry
Abstract In nutrient‐limited conditions, phytoplankton growth at fronts is enhanced by winds, which drive upward nutrient fluxes via enhanced turbulent mixing and upwelling. Hence, depth‐integrated phytoplankton biomass can be 10 times greater at isolated fronts. Using theory and two‐dimensional simulations with a coupled physical‐biogeochemical ocean model, this paper builds conceptual understanding of the physical processes driving upward nutrient fluxes at fronts forced by unsteady winds with timescales of 4–16 days. The largest vertical nutrient fluxes occur when the surface mixing layer penetrates the nutricline, which fuels phytoplankton in the mixed layer. At a front, mixed layer deepening depends on the magnitude and direction of the wind stress, cross‐front variations in buoyancy and velocity at the surface, and potential vorticity at the base of the mixed layer, which itself depends on past wind events. Consequently, mixing layers are deeper and more intermittent in time at fronts than outside fronts. Moreover, mixing can decouple in time from the wind stress, even without other sources of physical variability. Wind‐driven upwelling also enhances depth‐integrated phytoplankton biomass at fronts; when the mixed layer remains shallower than the nutricline, this results in enhanced subsurface phytoplankton. Oscillatory along‐front winds induce both oscillatory and mean upwelling. The mean effect of oscillatory vertical motion is to transiently increase subsurface phytoplankton over days to weeks, whereas slower mean upwelling sustains this increase over weeks to months. Taken together, these results emphasize that wind‐driven phytoplankton growth is both spatially and temporally intermittent and depends on a diverse combination of physical processes.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here