Premium
Anomalous Java cooling at the initiation of positive Indian Ocean Dipole events
Author(s) -
Delman Andrew S.,
Sprintall Janet,
McClean Julie L.,
Talley Lynne D.
Publication year - 2016
Publication title -
journal of geophysical research: oceans
Language(s) - English
Resource type - Journals
eISSN - 2169-9291
pISSN - 2169-9275
DOI - 10.1002/2016jc011635
Subject(s) - kelvin wave , thermocline , upwelling , equator , downwelling , geology , indian ocean dipole , climatology , equatorial waves , forcing (mathematics) , sea surface temperature , wind stress , swell , geophysics , oceanography , latitude , geodesy
Abstract Anomalous sea surface temperature (SST) cooling south of Java, initiated during May–July, is an important precursor to positive Indian Ocean Dipole (pIOD) events. As shown previously, the Java SST anomalies are spatially and temporally coincident with seasonal upwelling induced locally by southeasterly trade winds. However, we confirm earlier findings that interannual variability of the Java cooling is primarily driven by remote wind forcing from coastal Sumatra and the equatorial Indian Ocean (EqIO); we also find an influence from winds along the Indonesian Throughflow. The wind forcing in the EqIO and along coastal Sumatra does not initiate SST cooling locally due to a deep thermocline and thick barrier layer, but can force upwelling Kelvin waves that induce substantial surface cooling once they reach the seasonally shallower thermocline near the coast of Java. Satellite altimetry is used to obtain a Kelvin wave coefficient that approximates Kelvin wave amplitude variations along the equator. All pIOD years in the satellite record have anomalous levels of upwelling Kelvin wave activity along the equator during April–June, suggesting that upwelling waves during this season are necessary for pIOD event development. However, a change to wind‐forced downwelling Kelvin waves during July–August can abruptly terminate cool Java SST anomalies and weaken the pIOD event. Upwelling Kelvin wave activity along the equator and wind stress anomalies west of Sumatra are both robust predictors of the IOD index later in the calendar year, while values of the Kelvin wave coefficient are the most reliable predictor of pIOD events specifically.