Premium
Responses in the polar and equatorial ionosphere to the March 2015 St. Patrick Day storm
Author(s) -
Hairston Marc,
Coley W. R.,
Stoneback Russell
Publication year - 2016
Publication title -
journal of geophysical research: space physics
Language(s) - English
Resource type - Journals
eISSN - 2169-9402
pISSN - 2169-9380
DOI - 10.1002/2016ja023165
Subject(s) - ionosphere , geomagnetic storm , storm , polar , atmospheric sciences , geophysics , geology , equator , meteorology , latitude , solar wind , physics , geodesy , plasma , astronomy , quantum mechanics
The St. Patrick Day storm of 2015 (17 March 2015) occurred at a unique time when there were multiple spacecraft observing the Earth's ionosphere between 350 and 885 km. Observations of the plasma flows and densities from the five operational polar‐orbiting DMSP spacecraft combined with those from the equatorial‐orbiting C/NOFS spacecraft provided a comprehensive global record of the both the polar and equatorial ionosphere regions' responses to the storm. This paper presents an overview of the data from this suite of spacecraft focusing on the following aspects: (1) the polar cap ionosphere's reaction to the storm, (2) the change in the penetration electric field in the midlatitude region as a function of time and the solar local time during the storm, (3) the equatorial ionosphere's response of the meridional (vertical) flows to the penetration electric field and the disturbance dynamo during the storm, and (4) the creation of a predawn ionospheric bubble system near the equator during the storm's main phase that was observed at low altitudes by C/NOFS and later at high altitudes by several DMSP. Examining these phenomenon enable us to trace the dynamic flow of energy from the solar wind input in the polar ionosphere all the way to the equatorial ionosphere.