Premium
The control of earthquake sequences on hillslope stability
Author(s) -
Brain Matthew J.,
Rosser Nick J.,
Tunstall Neil
Publication year - 2017
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1002/2016gl071879
Subject(s) - landslide , geology , induced seismicity , seismology , remotely triggered earthquakes , magnitude (astronomy) , landslide classification , tectonics , seismic microzonation , displacement (psychology) , shear (geology) , geotechnical engineering , seismic gap , petrology , psychology , physics , astronomy , psychotherapist
Earthquakes trigger landslides in mountainous regions. Recent research suggests that the stability of hillslopes during and after a large earthquake is influenced by legacy effects of previous seismic activity. However, the shear strength and strain response of ductile hillslope materials to sequences of earthquake ground shaking of varying character is poorly constrained, inhibiting our ability to fully explain the nature of earthquake‐triggered landslides. We used geotechnical laboratory testing to simulate earthquake loading of hillslopes and to assess how different sequences of ground shaking influence hillslope stability prior to, during, and following an earthquake mainshock. Ground‐shaking events prior to a mainshock that do not result in high landslide strain accumulation can increase bulk density and interparticle friction. This strengthens a hillslope, reducing landslide displacement during subsequent seismicity. By implication, landscapes in different tectonic settings will likely demonstrate different short‐ and long‐term responses to single earthquakes due to differences in the magnitude, frequency, and sequencing of earthquakes.