Premium
Force balance at the magnetopause determined with MMS: Application to flux transfer events
Author(s) -
Zhao C.,
Russell C. T.,
Strangeway R. J.,
Petrinec S. M.,
Paterson W. R.,
Zhou M.,
Anderson B. J.,
Baumjohann W.,
Bromund K. R.,
Chutter M.,
Fischer D.,
Le G.,
Nakamura R.,
Plaschke F.,
Slavin J. A.,
Torbert R. B.,
Wei H. Y.
Publication year - 2016
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1002/2016gl071568
Subject(s) - magnetopause , physics , lorentz force , magnetic field , magnetometer , spacecraft , decoupling (probability) , magnetosphere , computational physics , flux (metallurgy) , plasma , magnetic flux , pressure gradient force , curvature , geophysics , mechanics , classical mechanics , materials science , geometry , astronomy , metallurgy , mathematics , quantum mechanics , control engineering , engineering
The Magnetospheric Multiscale mission (MMS) consists of four identical spacecraft forming a closely separated (≤10 km) and nearly regular tetrahedron. This configuration enables the decoupling of spatial and temporal variations and allows the calculation of the spatial gradients of plasma and electromagnetic field quantities. We make full use of the well cross‐calibrated MMS magnetometers and fast plasma instruments measurements to calculate both the magnetic and plasma forces in flux transfer events (FTEs) and evaluate the relative contributions of different forces to the magnetopause momentum variation. This analysis demonstrates that some but not all FTEs, consistent with previous studies, are indeed force‐free structures in which the magnetic pressure force balances the magnetic curvature force. Furthermore, we contrast these events with FTE events that have non‐force‐free signatures.