z-logo
Premium
The impact of Labrador Sea temperature and salinity variability on density and the subpolar AMOC in a decadal prediction system
Author(s) -
Menary Matthew B.,
Hermanson Leon,
Dunstone Nick J.
Publication year - 2016
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1002/2016gl070906
Subject(s) - salinity , climatology , temperature salinity diagrams , oceanography , environmental science , sea surface temperature , geology
Labrador Sea density variability is important for Atlantic Meridional Overturning Circulation (AMOC) dynamics and hence decadal variability in the Atlantic. We investigate whether temperature or salinity dominate top 500 m interannual Labrador Sea density variability in gridded observations, an assimilation of the observations, and a set of multiannual hindcasts. We find that salinity dominates in the observations and assimilation. In the hindcasts salinity remains dominant for the first year but from year three these revert to the same temperature dominance seen in the underlying climate model. This is due to damping of the interannual salinity variability, possibly caused by unrealistically large convection that develops. Crucially, the hindcasts have high correlation skill in temperature/salinity throughout, but no skill in density, dynamic sea level, or the subpolar AMOC due to the incorrect drivers. This highlights the importance of correctly simulating both the sign and magnitude of temperature/salinity variability in a prediction system.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here