Premium
Artificial bias typically neglected in comparisons of uncertain atmospheric data
Author(s) -
Pitkänen Mikko R. A.,
Mikkonen Santtu,
Lehtinen Kari E. J.,
Lipponen Antti,
Arola Antti
Publication year - 2016
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1002/2016gl070852
Subject(s) - regression , ordinary least squares , statistics , computer science , econometrics , mathematics
Publications in atmospheric sciences typically neglect biases caused by regression dilution (bias of the ordinary least squares line fitting) and regression to the mean (RTM) in comparisons of uncertain data. We use synthetic observations mimicking real atmospheric data to demonstrate how the biases arise from random data uncertainties of measurements, model output, or satellite retrieval products. Further, we provide examples of typical methods of data comparisons that have a tendency to pronounce the biases. The results show, that data uncertainties can significantly bias data comparisons due to regression dilution and RTM, a fact that is known in statistics but disregarded in atmospheric sciences. Thus, we argue that often these biases are widely regarded as measurement or modeling errors, for instance, while they in fact are artificial. It is essential that atmospheric and geoscience communities become aware of and consider these features in research.