Premium
The effects of barriers on supershear rupture
Author(s) -
Xu Jiankuan,
Zhang Zhenguo,
Chen Xiaofei
Publication year - 2016
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1002/2016gl069701
Subject(s) - geology , critical distance , geotechnical engineering , geomorphology , sound (geography) , sound power
A barrier may induce a supershear rupture transition in some cases, whereas it may prevent the further propagation of a supershear rupture in other cases. We investigate the effects of a barrier on the supershear rupture propagation on a planar fault in a 3‐D half‐space. Our results show that the effect of a barrier on supershear is strongly dependent on its size, strength, and location. For larger sizes, shallower buried depths, and relatively higher strengths, the barrier tends to prevent supershear propagation more strongly. When the barrier is located on the free surface and near the critical distance, it prevents the further propagation of supershear rupture. If a barrier is located far from the critical distance, the first supershear daughter crack is slowed down and a new supershear daughter crack is generated after the rupture front passes through the barrier. This mechanism greatly lengthens the supershear transition distance.