Premium
Classification of stratospheric extreme events according to their downward propagation to the troposphere
Author(s) -
Runde T.,
Dameris M.,
Garny H.,
Kinnison D. E.
Publication year - 2016
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1002/2016gl069569
Subject(s) - troposphere , stratosphere , geopotential height , polar vortex , atmospheric sciences , sudden stratospheric warming , climatology , environmental science , polar , geopotential , anomaly (physics) , perturbation (astronomy) , geology , meteorology , physics , precipitation , astronomy , condensed matter physics , quantum mechanics
Abstract This study presents a classification of stratospheric extreme events during northern winter into events with or without a consistent downward propagation of anomalies to the troposphere. Anomalous strong and weak stratospheric polar vortex events are detected from daily time series of the polar cap averaged (60°–90°N) geopotential height anomaly. The method is applied to chemistry‐climate model data (E39CA and WACCM3.5) and reanalyses data (ERA40). The analyses show that in about 80% of all events no significant tropospheric response can be detected. The stratospheric perturbation of both weak and strong events with a significant tropospheric response persists significantly longer throughout the stratosphere compared to the events without a tropospheric response. The strength of the stratospheric perturbation determines the strength of the tropospheric response only to a small degree. Results are consistent across all three data sets.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom