Premium
Reduced spatial extent of extreme storms at higher temperatures
Author(s) -
Wasko Conrad,
Sharma Ashish,
Westra Seth
Publication year - 2016
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1002/2016gl068509
Subject(s) - storm , environmental science , precipitation , atmospheric sciences , climatology , flooding (psychology) , winter storm , atmosphere (unit) , moisture , climate change , meteorology , geology , geography , oceanography , psychology , psychotherapist
Abstract Extreme precipitation intensity is expected to increase in proportion to the water‐holding capacity of the atmosphere. However, increases beyond this expectation have been observed, implying that changes in storm dynamics may be occurring alongside changes in moisture availability. Such changes imply shifts in the spatial organization of storms, and we test this by analyzing present‐day sensitivities between storm spatial organization and near‐surface atmospheric temperature. We show that both the total precipitation depth and the peak precipitation intensity increases with temperature, while the storm's spatial extent decreases. This suggests that storm cells intensify at warmer temperatures, with a greater total amount of moisture in the storm, as well as a redistribution of moisture toward the storm center. The results have significant implications for the severity of flooding, as precipitation may become both more intense and spatially concentrated in a warming climate.