z-logo
Premium
Uncertainty of mantle geophysical properties computed from phase equilibrium models
Author(s) -
Connolly J. A. D.,
Khan A.
Publication year - 2016
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1002/2016gl068239
Subject(s) - mantle (geology) , adiabatic process , geology , geophysics , shear (geology) , thermodynamics , physics , petrology
Phase equilibrium models are used routinely to predict geophysically relevant mantle properties. A limitation of this approach is that nonlinearity of the phase equilibrium problem precludes direct assessment of the resultant uncertainties. To overcome this obstacle, we stochastically assess uncertainties along self‐consistent mantle adiabats for pyrolitic and basaltic bulk compositions to 2000 km depth. The dominant components of the uncertainty are the identity, composition and elastic properties of the minerals. For P wave speed and density, the latter components vary little, whereas the first is confined to the upper mantle. Consequently, P wave speeds, densities, and adiabatic temperatures and pressures predicted by phase equilibrium models are more uncertain in the upper mantle than in the lower mantle. In contrast, uncertainties in S wave speeds are dominated by the uncertainty in shear moduli and are approximately constant throughout the model depth range.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here