Premium
Can a paleodrought record be used to reconstruct streamflow?: A case study for the Missouri River Basin
Author(s) -
Ho Michelle,
Lall Upmanu,
Cook Edward R.
Publication year - 2016
Publication title -
water resources research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.863
H-Index - 217
eISSN - 1944-7973
pISSN - 0043-1397
DOI - 10.1002/2015wr018444
Subject(s) - streamflow , paleoclimatology , climatology , proxy (statistics) , dendrochronology , drainage basin , dendroclimatology , environmental science , structural basin , geology , climate change , physical geography , geography , cartography , oceanography , paleontology , machine learning , computer science
Recent advances in paleoclimatology have revealed dramatic long‐term hydroclimatic variations that provide a context for limited historical records. A notable data set derived from a relatively dense network of paleoclimate proxy records in North America is the Living Blended Drought Atlas (LBDA): a gridded tree‐ring‐based reconstruction of summer Palmer Drought Severity Index. This index has been used to assess North American drought frequency, persistence, and spatial extent over the past two millennia. Here, we explore whether the LBDA can be used to reconstruct annual streamflow. Relative to streamflow reconstructions that use tree rings within the river basin of interest, the use of a gridded proxy poses a novel challenge. The gridded series have high spatial correlation, since they rely on tree rings over a common radius of influence. A novel algorithm for reconstructing streamflow using regularized canonical regression and inputs of local and global covariates is developed and applied over the Missouri River Basin, as a test case. Effectiveness in reconstruction is demonstrated with reconstructions showing periods where streamflow deficits may have been more severe than during recent droughts (e.g., the Civil War, Dust Bowl, and 1950s droughts). The maximum persistence of droughts and floods over the past 500 years far exceeds those observed in the instrumental record and periods of multidecadal variability in the 1500s and 1600s are detected. Challenges for an extension to a national streamflow reconstruction or applications using other gridded paleoclimate data sets such as adequate spatial coverage of streamflow and applicability of annual reconstructions are discussed.