z-logo
Premium
Physical complexity to model morphological changes at a natural channel bend
Author(s) -
Guan M.,
Wright N. G.,
Sleigh P. A.,
Ahilan S.,
Lamb R.
Publication year - 2016
Publication title -
water resources research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.863
H-Index - 217
eISSN - 1944-7973
pISSN - 0043-1397
DOI - 10.1002/2015wr017917
Subject(s) - channel (broadcasting) , flow (mathematics) , sediment transport , surface finish , scale (ratio) , geology , geotechnical engineering , deformation (meteorology) , sediment , natural (archaeology) , grain size , flow conditions , series (stratigraphy) , mechanics , geometry , mathematics , geomorphology , computer science , engineering , physics , cartography , geography , mechanical engineering , paleontology , oceanography , computer network
This study developed a two‐dimensional (2‐D) depth‐averaged model for morphological changes at natural bends by including a secondary flow correction. The model was tested in two laboratory‐scale events. A field study was further adopted to demonstrate the capability of the model in predicting bed deformation at natural bends. Further, a series of scenarios with different setups of sediment‐related parameters were tested to explore the possibility of a 2‐D model to simulate morphological changes at a natural bend, and to investigate how much physical complexity is needed for reliable modeling. The results suggest that a 2‐D depth‐averaged model can reconstruct the hydrodynamic and morphological features at a bend reasonably provided that the model addresses a secondary flow correction, and reasonably parameterize grain‐sizes within a channel in a pragmatic way. The factors, such as sediment transport formula and roughness height, have relatively less significance on the bed change pattern at a bend. The study reveals that the secondary flow effect and grain‐size parameterization should be given a first priority among other parameters when modeling bed deformation at a natural bend using a 2‐D model.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom