z-logo
Premium
High‐ P erformance I ntegrated C ontrol of water quality and quantity in urban water reservoirs
Author(s) -
Galelli S.,
Castelletti A.,
Goedbloed A.
Publication year - 2015
Publication title -
water resources research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.863
H-Index - 217
eISSN - 1944-7973
pISSN - 0043-1397
DOI - 10.1002/2015wr017595
Subject(s) - environmental science , controller (irrigation) , water quality , computer science , environmental engineering , ecology , agronomy , biology
This paper contributes a novel High‐Performance Integrated Control framework to support the real‐time operation of urban water supply storages affected by water quality problems. We use a 3‐D, high‐fidelity simulation model to predict the main water quality dynamics and inform a real‐time controller based on Model Predictive Control. The integration of the simulation model into the control scheme is performed by a model reduction process that identifies a low‐order, dynamic emulator running 4 orders of magnitude faster. The model reduction, which relies on a semiautomatic procedural approach integrating time series clustering and variable selection algorithms, generates a compact and physically meaningful emulator that can be coupled with the controller. The framework is used to design the hourly operation of Marina Reservoir, a 3.2 Mm 3 storm‐water‐fed reservoir located in the center of Singapore, operated for drinking water supply and flood control. Because of its recent formation from a former estuary, the reservoir suffers from high salinity levels, whose behavior is modeled with Delft3D‐FLOW. Results show that our control framework reduces the minimum salinity levels by nearly 40% and cuts the average annual deficit of drinking water supply by about 2 times the active storage of the reservoir (about 4% of the total annual demand).

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom