z-logo
open-access-imgOpen Access
Modeling the MJO in a cloud‐resolving model with parameterized large‐scale dynamics: Vertical structure, radiation, and horizontal advection of dry air
Author(s) -
Wang Shuguang,
Sobel Adam H.,
Nie Ji
Publication year - 2016
Publication title -
journal of advances in modeling earth systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.03
H-Index - 58
ISSN - 1942-2466
DOI - 10.1002/2015ms000529
Subject(s) - madden–julian oscillation , advection , radiative transfer , environmental science , radiative cooling , atmospheric sciences , precipitation , meteorology , climate model , climatology , physics , convection , geology , climate change , quantum mechanics , thermodynamics , oceanography
Two Madden‐Julian Oscillation (MJO) events, observed during October and November 2011 in the equatorial Indian Ocean during the DYNAMO field campaign, are simulated in a limited‐area cloud‐resolving model using parameterized large‐scale dynamics. Three parameterizations of large‐scale dynamics—the conventional weak temperature gradient (WTG) approximation, vertical mode‐based spectral WTG (SWTG), and damped gravity wave coupling (DGW)—are employed. A number of changes to the implementation of the large‐scale parameterizations, as well as the model itself, are made and lead to improvements in the results. Simulations using all three methods, with imposed time‐dependent radiation and horizontal moisture advection, capture the time variations in precipitation associated with the two MJO events well. The three methods produce significant differences in the large‐scale vertical motion profile, however. WTG produces the most top‐heavy profile, while DGW's is less so, and SWTG produces a profile between the two, and in better agreement with observations. Numerical experiments without horizontal advection of moisture suggest that that process significantly reduces the precipitation and suppresses the top‐heaviness of large‐scale vertical motion during the MJO active phases. Experiments in which a temporally constant radiative heating profile is used indicate that radiative feedbacks significantly amplify the MJO. Experiments in which interactive radiation is used produce agreement with observations that is much better than that achieved in previous work, though not as good as that with imposed time‐varying radiative heating. Our results highlight the importance of both horizontal advection of moisture and radiative feedbacks to the dynamics of the MJO.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here