Premium
Potential impacts of climate change on vegetation dynamics in Central Asia
Author(s) -
Li Zhi,
Chen Yaning,
Li Weihong,
Deng Haijun,
Fang Gonghuan
Publication year - 2015
Publication title -
journal of geophysical research: atmospheres
Language(s) - English
Resource type - Journals
eISSN - 2169-8996
pISSN - 2169-897X
DOI - 10.1002/2015jd023618
Subject(s) - precipitation , vegetation (pathology) , normalized difference vegetation index , central asia , environmental science , grassland , physical geography , shrubland , climate change , shrub , climatology , ecosystem , geography , atmospheric sciences , ecology , geology , meteorology , biology , medicine , pathology
Abstract Observations indicate that although average temperatures in Central Asia showed almost no increases from 1997 to 2013, they have been in a state of high variability. Despite the lack of a clear increasing trend, this 15 year period is still the hottest in nearly half a century. Precipitation in Central Asia remained relatively stable from 1960 to 1986 and then showed a sharp increase in 1987. Since the beginning of the 21st century, however, the increasing rate of precipitation has diminished. Dramatic changes in meteorological conditions could potentially have a strong impact on the region's natural ecosystems, as some significant changes have already occurred. Specifically, the normalized difference vegetation index (NDVI) of natural vegetation in Central Asia during 1982–2013 exhibited an increasing trend at a rate of 0.004 per decade prior to 1998, after which the trends reversed, and the NDVI decreased at a rate of 0.003 per decade. Moreover, our results indicate that shrub cover and patch size exhibited a significant increase in 2000–2013 compared to the 1980s–1990s, including shrub encroachment on grasslands. Over the past 10 years, 8% of grassland has converted to shrubland. Precipitation increased in the 1990s, providing favorable conditions for vegetation growth, but precipitation slightly reduced at the end of the 2000s. Meanwhile, warming intensified 0.93°C since 1997 compared to the average value in 1960–1997, causing less moisture to be available for vegetation growth in Central Asia.