z-logo
Premium
A case study of typhoon‐induced gravity waves and the orographic impacts related to Typhoon Mindulle (2004) over Taiwan
Author(s) -
Wu J. F.,
Xue X. H.,
Hoffmann L.,
Dou X. K.,
Li H. M.,
Chen T. D.
Publication year - 2015
Publication title -
journal of geophysical research: atmospheres
Language(s) - English
Resource type - Journals
eISSN - 2169-8996
pISSN - 2169-897X
DOI - 10.1002/2015jd023517
Subject(s) - typhoon , stratosphere , weather research and forecasting model , gravity wave , orography , orographic lift , climatology , troposphere , atmospheric sciences , gravitational wave , environmental science , atmospheric wave , geology , tropical wave , meteorology , tropical cyclone , precipitation , physics , astrophysics
Atmospheric gravity waves (GWs) significantly influence global circulation. Deep convection, particularly that associated with typhoons, is believed to be an important source of gravity waves. Stratospheric gravity waves induced by Typhoon Mindulle (2004) were detected by the Atmospheric Infrared Sounder (AIRS). Semicircular GWs with horizontal wavelengths of 100–400 km were found over Taiwan through an inspection of AIRS radiances at 4.3 μm. Characteristics of the stratospheric gravity waves generated by Typhoon Mindulle were investigated using the Weather Research and Forecasting (WRF) model. The initial and boundary data were determined by the high‐resolution European Center for Medium‐Range Weather Forecasts reanalysis data. The WRF simulation reproduces the main features of Typhoon Mindulle and the significant GWs. The simulated GWs with horizontal wavelengths of 100–400 km match the AIRS observations: they propagate upward and eastward, and the westward components are mostly filtered in the stratosphere. By comparing the measured waves with a WRF simulation in the absent of orography (WRF‐FLAT), we find that the orographic gravity waves (OGWs) generated by the flow of Typhoon Mindulle over the Central Mountain Range (CMR) in Taiwan account for approximately 50% of the total wave momentum flux in the troposphere. The dominant orientation of the OGW wave fronts is parallel to the CMR rideline. When entering into the stratosphere, OGW propagation is determined by the position of the typhoon center relative to the CMR.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here