Premium
Propagation of uncertainty and sensitivity analysis in an integral oil‐gas plume model
Author(s) -
Wang Shitao,
Iskandarani Mohamed,
Srinivasan Ashwanth,
Thacker W. Carlisle,
Winokur Justin,
Knio Omar M.
Publication year - 2016
Publication title -
journal of geophysical research: oceans
Language(s) - English
Resource type - Journals
eISSN - 2169-9291
pISSN - 2169-9275
DOI - 10.1002/2015jc011365
Subject(s) - plume , polynomial chaos , environmental science , entrainment (biomusicology) , range (aeronautics) , flow (mathematics) , sensitivity (control systems) , uncertainty analysis , mechanics , volumetric flow rate , uncertainty quantification , percentile , mathematics , statistics , meteorology , monte carlo method , physics , materials science , engineering , rhythm , acoustics , composite material , electronic engineering
Polynomial Chaos expansions are used to analyze uncertainties in an integral oil‐gas plume model simulating the Deepwater Horizon oil spill. The study focuses on six uncertain input parameters—two entrainment parameters, the gas to oil ratio, two parameters associated with the droplet‐size distribution, and the flow rate—that impact the model's estimates of the plume's trap and peel heights, and of its various gas fluxes. The ranges of the uncertain inputs were determined by experimental data. Ensemble calculations were performed to construct polynomial chaos‐based surrogates that describe the variations in the outputs due to variations in the uncertain inputs. The surrogates were then used to estimate reliably the statistics of the model outputs, and to perform an analysis of variance. Two experiments were performed to study the impacts of high and low flow rate uncertainties. The analysis shows that in the former case the flow rate is the largest contributor to output uncertainties, whereas in the latter case, with the uncertainty range constrained by aposteriori analyses, the flow rate's contribution becomes negligible. The trap and peel heights uncertainties are then mainly due to uncertainties in the 95% percentile of the droplet size and in the entrainment parameters.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom