z-logo
Premium
Shelf/fjord exchange driven by coastal‐trapped waves in the A rctic
Author(s) -
Inall Mark E.,
Nilsen Frank,
Cottier Finlo R.,
Daae Ragnhild
Publication year - 2015
Publication title -
journal of geophysical research: oceans
Language(s) - English
Resource type - Journals
eISSN - 2169-9291
pISSN - 2169-9275
DOI - 10.1002/2015jc011277
Subject(s) - barotropic fluid , baroclinity , fjord , stratification (seeds) , oceanography , geology , estuary , internal wave , wavelength , environmental science , atmospheric sciences , physics , seed dormancy , botany , germination , optoelectronics , dormancy , biology
In this article, we show that the class of low frequency (subinertial) waves known as coastal‐trapped waves (CTWs) are a significant agent of water volume exchange in a west Svalbard fjord, and by extension more widely along the west Svalbard and east Greenland margins where similar conditions prevail. We show that CTWs generated by weather systems passing across the sloping topography of the shelf break propagate into the fjord, steered by the topography of an across‐shelf trough. The CTWs have characteristic periods of ∼2 days, set by the passage time of weather systems. Phase speeds and wavelengths vary seasonally by a factor of two, according to stratification: winter (summer) values are C p  = 0.25 ms −1 (0.5 ms −1 ) and λ = 40 km (84 km). CTW‐induced flow velocities in excess of 0.2 ms −1 at 100 m water depth are recorded. Observationally scaled CTW model results allow their explicit role in volume exchange to be quantified. Of the estimated exchange terms, estuarine exchange is weakest ( Q e s t = 0 . 62 × 1 0 3m 3 s −1 ), followed by barotropic tidal pumping ( Q b t = 2 . 5 × 1 0 3m 3 s −1 ), with intermediary exchange dominating ( Q i = 2 . 4 × 1 0 4m 3 s −1 ). Oscillatory flows display greatest activity in the 1–5 day period band, and CTW activity is identified as the likely source of variability in the 40–60 h period band. Within that band, intermediary exchange driven by CTWs is estimated asQ i C T W _ a v e = 0 . 82 × 1 0 4m 3 s −1 ; an exchange rate exceeding both barotropic and estuarine exchange estimates.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here