Premium
Future change in ocean productivity: Is the Arctic the new Atlantic?
Author(s) -
Yool A.,
Popova E. E.,
Coward A. C.
Publication year - 2015
Publication title -
journal of geophysical research: oceans
Language(s) - English
Resource type - Journals
eISSN - 2169-9291
pISSN - 2169-9275
DOI - 10.1002/2015jc011167
Subject(s) - oceanography , arctic , climate change , environmental science , arctic geoengineering , sea ice , productivity , arctic sea ice decline , spring bloom , biogeochemistry , marine ecosystem , climatology , stratification (seeds) , arctic ice pack , ecosystem , nutrient , geology , ecology , antarctic sea ice , phytoplankton , biology , dormancy , economics , seed dormancy , botany , germination , macroeconomics
One of the most characteristic features in ocean productivity is the North Atlantic spring bloom. Responding to seasonal increases in irradiance and stratification, surface phytopopulations rise significantly, a pattern that visibly tracks poleward into summer. While blooms also occur in the Arctic Ocean, they are constrained by the sea‐ice and strong vertical stratification that characterize this region. However, Arctic sea‐ice is currently declining, and forecasts suggest this may lead to completely ice‐free summers by the mid‐21st century. Such change may open the Arctic up to Atlantic‐style spring blooms, and do so at the same time as Atlantic productivity is threatened by climate change‐driven ocean stratification. Here we use low and high‐resolution instances of a coupled ocean‐biogeochemistry model, NEMO‐MEDUSA, to investigate productivity. Drivers of present‐day patterns are identified, and changes in these across a climate change scenario (IPCC RCP 8.5) are analyzed. We find a globally significant decline in North Atlantic productivity (> −20%) by 2100, and a correspondingly significant rise in the Arctic (> +50%). However, rather than the future Arctic coming to resemble the current Atlantic, both regions are instead transitioning to a common, low nutrient regime. The North Pacific provides a counterexample where nutrients remain high and productivity increases with elevated temperature. These responses to climate change in the Atlantic and Arctic are common between model resolutions, suggesting an independence from resolution for key impacts. However, some responses, such as those in the North Pacific, differ between the simulations, suggesting the reverse and supporting the drive to more fine‐scale resolutions.