z-logo
Premium
Estimating river discharge using multiple‐tide gauges distributed along a channel
Author(s) -
Moftakhari H. R.,
Jay D. A.,
Talke S. A.
Publication year - 2016
Publication title -
journal of geophysical research: oceans
Language(s) - English
Resource type - Journals
eISSN - 2169-9291
pISSN - 2169-9275
DOI - 10.1002/2015jc010983
Subject(s) - discharge , estuary , tide gauge , inflow , tidal range , hydrology (agriculture) , tidal model , streamflow , environmental science , range (aeronautics) , tidal river , geology , water level , flow (mathematics) , oceanography , sea level , geography , drainage basin , geotechnical engineering , materials science , geometry , cartography , mathematics , composite material
Reliable estimation of freshwater inflow to the ocean from large tidal rivers is vital for water resources management and climate analyses. Discharge gauging stations are typically located beyond the tidal intrusion reach, such that inputs and losses occurring closer to the ocean are not included. Here, we develop a method of estimating river discharge using multiple gauges and time‐dependent tidal statistics determined via wavelet analysis. The Multiple‐gauge Tidal Discharge Estimate (MTDE) method is developed using data from the Columbia River and Fraser River estuaries and calibrated against river discharge. Next, we evaluate the general applicability of MTDE by testing an idealized two‐dimensional numerical model, with a convergent cross‐sectional profile, for eighty‐one cases in which nondimensional numbers for friction, river flow, and convergence length scale are varied. The simulations suggest that MTDE is applicable to a variety of tidal systems. Model results and data analyses together suggest that MTDE works best with at least three gauges: a reference station near the river mouth, and two upstream gauges that respond strongly to distinct portions of the observed range of flow. The balance between tidal damping and amplifying factors determines the favorable location of the gauges. Compared to previous studies, the MTDE method improves the time resolution of estimates (from 2.5 to <1 week) and is applicable to systems with mixed diurnal/semidiurnal tides. However, model results suggest that tide‐induced residual flows such as the Stokes drift may still affect the accuracy of MTDE at seaward locations during periods of low river discharge.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here