z-logo
Premium
Circulation of modified C ircumpolar D eep W ater and basal melt beneath the A mery I ce S helf, E ast A ntarctica
Author(s) -
HerraizBorreguero Laura,
Coleman Richard,
Allison Ian,
Rintoul Stephen R.,
Craven Mike,
Williams Guy D.
Publication year - 2015
Publication title -
journal of geophysical research: oceans
Language(s) - English
Resource type - Journals
eISSN - 2169-9291
pISSN - 2169-9275
DOI - 10.1002/2015jc010697
Subject(s) - ice shelf , meltwater , geology , oceanography , antarctic ice sheet , ice sheet , sea ice , cryosphere , geomorphology , glacial period
Abstract Antarctic ice sheet mass loss has been linked to an increase in oceanic heat supply, which enhances basal melt and thinning of ice shelves. Here we detail the interaction of modified Circumpolar Deep Water (mCDW) with the Amery Ice Shelf, the largest ice shelf in East Antarctica, and provide the first estimates of basal melting due to mCDW. We use subice shelf ocean observations from a borehole site (AM02) situated ∼70 km inshore of the ice shelf front, together with open ocean observations in Prydz Bay. We find that mCDW transport into the cavity is about 0.22 ± 0.06 Sv (1 Sv = 10 6 m 3 s −1 ). The inflow of mCDW drives a net basal melt rate of up to 2 ± 0.5 m yr −1 during 2001 (23.9 ± 6.52 Gt yr −1 from under about 12,800 km 2 of the north‐eastern flank of the ice shelf). The heat content flux by mCDW at AM02 shows high intra‐annual variability (up to 40%). Our results suggest two main modes of subice shelf circulation and basal melt regimes: (1) the “ice pump”/high salinity shelf water circulation, on the western flank and (2) the mCDW meltwater‐driven circulation in conjunction with the “ice pump,” on the eastern flank. These results highlight the sensitivity of the Amery's basal melting to changes in mCDW inflow. Improved understanding of such ice shelf‐ocean interaction is crucial to refining projections of mass loss and associated sea level rise.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here