z-logo
Premium
Evolution of the rheological and microstructural properties of olivine aggregates during dislocation creep under hydrous conditions
Author(s) -
Tasaka Miki,
Zimmerman Mark E.,
Kohlstedt David L.
Publication year - 2016
Publication title -
journal of geophysical research: solid earth
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.983
H-Index - 232
eISSN - 2169-9356
pISSN - 2169-9313
DOI - 10.1002/2015jb012134
Subject(s) - olivine , materials science , creep , rheology , strain rate , grain size , dislocation creep , softening , dislocation , mineralogy , pyroxene , geology , composite material
Since hydrogen plays an important role in dynamic processes in Earth's mantle, we conducted torsion experiments to shear strains of 0.6 to 5.0 on Fe‐bearing olivine aggregates [(Mg 0.5 Fe 0.5 ) 2 SiO 4 : Fo 50 ] under hydrous conditions at T  = 1200°C and P  = 300 MPa. We deformed samples to high enough strains that a steady state microstructures were achieved, which allowed us to investigate the evolution of both the rheological and microstructural properties. The stress exponent of n  ≈ 5.0 and the grain size exponent of p  ≈ 0 determined by fitting the strain rate, stress, and grain size data indicate that our samples deformed by dislocation creep. Fourier transform infrared spectroscopy measurements on embedded olivine single crystals demonstrated that our samples were saturated with hydrogen during the deformation experiments. The lattice preferred orientation (LPO) of olivine changes as a function of strain due to competition among three slip systems: (010)[100], (100)[001], and (001)[100]. Observed strain weakening can be attributed to geometrical softening associated with development of LPO, which reduces the stress by ~1/3 from its peak value in constant strain rate experiments. The geometrical softening coefficient determined in this study is an important constraint for modeling and understanding dynamical processes in the upper mantle under hydrous conditions.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here