z-logo
Premium
The responses of the nightglow emissions observed by the TIMED/SABER satellite to solar radiation
Author(s) -
Gao Hong,
Xu Jiyao,
Chen GuangMing
Publication year - 2016
Publication title -
journal of geophysical research: space physics
Language(s) - English
Resource type - Journals
eISSN - 2169-9402
pISSN - 2169-9380
DOI - 10.1002/2015ja021624
Subject(s) - airglow , atmospheric sciences , depth sounding , physics , atmosphere (unit) , environmental science , radiation , flux (metallurgy) , meteorology , optics , chemistry , geography , cartography , organic chemistry
The responses of four nightglow emissions, NO emission at 5.3 µm, O 2 infrared atmospheric band at 1.27 µm, and OH emissions at 2.0 µm and 1.6 µm (referred to as OH2 and OH1 in this study), to solar radiation are studied and compared based on the data observed by the Sounding of the Atmosphere using Broadband Emission Radiometry instrument over 13 years. The quantitative relationships between the nightglow emissions and solar radiation are obtained by a linear regression fit using the F 10.7 index. The intensities and the peak heights of the 13 year average global mean NO, O 2 , OH2, and OH1 nightglows are 270.0 ± 42.8 kR, 106.9 ± 2.2 kR, 133.2 ± 1.6 kR, 217.5 ± 2.4 kR, 123.6 ± 0.2 km, 89.8 ± 0.05 km, 88.1 ± 0.02 km, and 86.6 ± 0.02 km, respectively. Among the four nightglow emissions, the influence of solar radiation on the ones at lower heights is weaker than the ones higher above. The responses of the global mean NO, O 2 , OH2, and OH1 nightglow intensities to solar radiation are 176.3 ± 4.8%/100 solar flux units (sfu), 22.2 ± 1.4%/100 sfu, 12.9 ± 1.1%/100 sfu, and 11.4 ± 1.3%/100 sfu, respectively. The intensities and peak emission rates of the four global mean nightglow emissions are highly correlated to solar radiation. The response of the height of the global mean O 2 nightglow peak emission rate to solar radiation is 0.51 ± 0.08 km/100 sfu. The responses of NO, OH2, and OH1 nightglow peak heights to solar radiation are not obvious. In addition, the responses of nightglow emissions to solar radiation change with latitude.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here