z-logo
Premium
On the variation of the ionospheric potential due to large‐scale radioactivity enhancement and solar activity
Author(s) -
Slyunyaev Nikolay N.,
Mareev Evgeny A.,
Zhidkov Artem A.
Publication year - 2015
Publication title -
journal of geophysical research: space physics
Language(s) - English
Resource type - Journals
eISSN - 2169-9402
pISSN - 2169-9380
DOI - 10.1002/2015ja021039
Subject(s) - conductivity , thunderstorm , atmospheric sciences , ionosphere , current (fluid) , physics , environmental science , computational physics , meteorology , geophysics , thermodynamics , quantum mechanics
Sensitivity of the global electric circuit (GEC) to variations of atmospheric conductivity and current sources is analyzed and discussed. When the undisturbed exponential conductivity profile is assumed all over the Earth, the most substantial changes in the ionospheric potential (IP) are caused by conductivity perturbations inside thunderstorms; if, in addition, conductivity reduction inside thunderstorms and nonelectrified clouds is assumed, the IP becomes less sensitive to conductivity perturbations; besides, the IP is even more sensitive to source current variations than to conductivity. Current source and voltage source descriptions of GEC generators are compared; it is shown that the IP variation may critically depend on the chosen description. As an application, the IP variation due to nuclear weapons testing is studied; it is shown that neither local nor global increase of conductivity in the stratosphere could alone explain the observed 40% IP increase in the 1960s; at the same time this increase might be accounted for by a 40% increase in the source current density or a 46% reduction of the conductivity inside thunderstorms, provided that it was not reduced initially. The IP variation due to solar activity and, in particular, due to solar modulation of galactic cosmic ray flux is also discussed and modeled, which required an adequate parameterization of the rate of atmospheric ion pair production over the solar cycle. It is estimated that the maximum IP variation on the scale of the solar cycle does not exceed 5% of the mean value, unless source current perturbations are taken into account.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here