Premium
Photochemical response of the nighttime mesosphere to electric field heating—Recovery of electron density enhancements
Author(s) -
Kotovsky D. A.,
Moore R. C.
Publication year - 2016
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1002/2015gl067014
Subject(s) - scattering , electric field , mesosphere , electron , electron density , electron scattering , atmospheric sciences , physics , field (mathematics) , atomic physics , computational physics , environmental science , optics , mathematics , quantum mechanics , stratosphere , pure mathematics
A photochemical model has been developed to examine the response of the nighttime mesosphere to electric field heating. Time dynamics of 29 chemical species are accounted for by a set of 156 reactions. Recovery dynamics of electron density enhancements are examined in detail, and the recovery timescales of VLF scattering resulting from the modeled conductivity changes are quantitatively estimated. Both typical recovery (up to 240 s) and long recovery (>300 s) timescales of early VLF scattering events are explainable in terms of the model results. Electron production and loss during recovery is determined by a small set of attachment, detachment, and recombination processes. Based on the model results, we conclude that long recovery VLF scattering proceeds from sufficiently large electron density enhancements that are controlled by slow recombination loss (i.e., when attachment loss is small or balanced by detachment).