Premium
Transient seafloor venting on continental slopes from warming‐induced methane hydrate dissociation
Author(s) -
Darnell K. N.,
Flemings P. B.
Publication year - 2015
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1002/2015gl067012
Subject(s) - methane , clathrate hydrate , hydrate , seafloor spreading , geology , continental shelf , continental margin , oceanography , environmental science , paleontology , chemistry , tectonics , organic chemistry
Abstract Methane held in frozen hydrate cages within marine sediment comprises one of the largest carbon reservoirs on the planet. Recent submarine observations of widespread methane seepage may record hydrate dissociation due to oceanic warming, which consequently may further amplify climate change. Here we simulate the effect of seafloor warming on marine hydrate deposits using a multiphase flow model. We show that hydrate dissociation, gas migration, and subsequent hydrate formation cangenerate temporary methane venting into the ocean through the hydrate stability zone. Methane seeps venting through the hydrate stability zone on the eastern Atlantic margin may record this process due to warming begun thousands of years ago. Our results contrast with the traditional view that venting occurs only updip of the hydrate stability zone.