Premium
The propagation and seismicity of dyke injection, new experimental evidence
Author(s) -
Bakker Richard R.,
Fazio Marco,
Benson Philip M.,
Hess KaiUwe,
Dingwell Donald B.
Publication year - 2016
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1002/2015gl066852
Subject(s) - induced seismicity , geology , basalt , magma , volcano , seismology , fracture (geology) , acoustic emission , geotechnical engineering , materials science , composite material
To reach the surface, dykes must overcome the inherent tensile strength of the country rock. As they do, they generate swarms of seismic signals, frequently used for forecasting. In this study we pressurize and inject molten acrylic into an encapsulating host rocks of (1) Etna basalt and (2) Comiso limestone, at 30 MPa of confining pressure. Fracture was achieved at 12 MPa for Etna basalt and 7.2 MPa for Comiso limestone. The generation of radial fractures was accompanied by acoustic emissions (AE) at a dominant frequency of 600 kHz. During “magma” movement in the dykes, AE events of approximately 150 kHz dominant frequency were recorded. We interpret our data using AE location and dominant frequency analysis, concluding that the seismicity associated with magma transport in dykes peaks during initial dyke creation but remains significant as long as magma movement continues. These results have important implications for seismic monitoring of active volcanoes.