Premium
Resonance of relativistic electrons with electromagnetic ion cyclotron waves
Author(s) -
Denton R. E.,
Jordanova V. K.,
Bortnik J.
Publication year - 2015
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1002/2015gl064379
Subject(s) - physics , plasmasphere , atomic physics , cyclotron , electron , van allen probes , cyclotron resonance , computational physics , van allen radiation belt , magnetosphere , nuclear physics , plasma
Relativistic electrons have been thought to more easily resonate with electromagnetic ion cyclotron (EMIC) waves if the total density is large. We show that for a particular EMIC mode, this dependence is weak due to the dependence of the wave frequency and wave vector on the density. A significant increase in relativistic electron minimum resonant energy might occur for the H band EMIC mode only for small density, but no changes in parameters significantly decrease the minimum resonant energy from a nominal value. The minimum resonant energy depends most strongly on the thermal velocity associated with the field line motion of the hot ring current protons that drive the instability. High density due to a plasmasphere or plasmaspheric plume could possibly lead to lower minimum resonance energy by causing the He band EMIC mode to be dominant. We demonstrate these points using parameters from a ring current simulation.