z-logo
Premium
Time domain structures: What and where they are, what they do, and how they are made
Author(s) -
Mozer F. S.,
Agapitov O. V.,
Artemyev A.,
Drake J. F.,
Krasnoselskikh V.,
Lejosne S.,
Vasko I.
Publication year - 2015
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1002/2015gl063946
Subject(s) - whistler , physics , electron , pitch angle , electric field , computational physics , van allen radiation belt , electromagnetic radiation , atomic physics , magnetic field , optics , geophysics , magnetosphere , quantum mechanics
Time domain structures (TDS) (electrostatic or electromagnetic electron holes, solitary waves, double layers, etc.) are ≥1 ms pulses having significant parallel (to the background magnetic field) electric fields. They are abundant through space and occur in packets of hundreds in the outer Van Allen radiation belts where they produce magnetic‐field‐aligned electron pitch angle distributions at energies up to a hundred keV. TDS can provide the seed electrons that are later accelerated to relativistic energies by whistlers and they also produce field‐aligned electrons that may be responsible for some types of auroras. These field‐aligned electron distributions result from at least three processes. The first process is parallel acceleration by Landau trapping in the TDS parallel electric field. The second process is Fermi acceleration due to reflection of electrons by the TDS. The third process is an effective and rapid pitch angle scattering resulting from electron interactions with the perpendicular and parallel electric and magnetic fields of many TDS. TDS are created by current‐driven and beam‐related instabilities and by whistler‐related processes such as parametric decay of whistlers and nonlinear evolution from oblique whistlers. New results on the temporal relationship of TDS and particle injections, types of field‐aligned electron pitch angle distributions produced by TDS, the mechanisms for generation of field‐aligned distributions by TDS, the maximum energies of field‐aligned electrons created by TDS in the absence of whistler mode waves, TDS generation by oblique whistlers and three‐wave‐parametric decay, and the correlation between TDS and auroral particle precipitation, are presented.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here